A variational approach to moment-closure approximations for the kinetics of biomolecular reaction networks.
نویسندگان
چکیده
Approximate solutions of the chemical master equation and the chemical Fokker-Planck equation are an important tool in the analysis of biomolecular reaction networks. Previous studies have highlighted a number of problems with the moment-closure approach used to obtain such approximations, calling it an ad hoc method. In this article, we give a new variational derivation of moment-closure equations which provides us with an intuitive understanding of their properties and failure modes and allows us to correct some of these problems. We use mixtures of product-Poisson distributions to obtain a flexible parametric family which solves the commonly observed problem of divergences at low system sizes. We also extend the recently introduced entropic matching approach to arbitrary ansatz distributions and Markov processes, demonstrating that it is a special case of variational moment closure. This provides us with a particularly principled approximation method. Finally, we extend the above approaches to cover the approximation of multi-time joint distributions, resulting in a viable alternative to process-level approximations which are often intractable.
منابع مشابه
Adaptive Moment Closure for Parameter Inference of Biochemical Reaction Networks
Continuous-time Markov chain (CTMC) models have become a central tool for understanding the dynamics of complex reaction networks and the importance of stochasticity in the underlying biochemical processes. When such models are employed to answer questions in applications, in order to ensure that the model provides a sufficiently accurate representation of the real system, it is of vital import...
متن کاملKinetic Mechanism Reduction Using Genetic Algorithms, Case Study on H2/O2 Reaction
For large and complex reacting systems, computational efficiency becomes a critical issue in process simulation, optimization and model-based control. Mechanism simplification is often a necessity to improve computational speed. We present a novel approach to simplification of reaction networks that formulates the model reduction problem as an optimization problem and solves it using geneti...
متن کاملFilm cooling effectiveness in single row of holes: First moment closure modeling
The present article focuses on the evaluation of a first-moment closure model applicable to film cooling flow and heat transfer computations. The present first-moment closure model consists of a higher level of turbulent heat flux modeling in which two additional transport equations for temperature variance kθ and its dissipation rate εθ are ...
متن کاملComparison of different moment-closure approximations for stochastic chemical kinetics.
In recent years, moment-closure approximations (MAs) of the chemical master equation have become a popular method for the study of stochastic effects in chemical reaction systems. Several different MA methods have been proposed and applied in the literature, but it remains unclear how they perform with respect to each other. In this paper, we study the normal, Poisson, log-normal, and central-m...
متن کاملA Variational Formulation of Optimal Nonlinear Estimation
We propose a variational method to solve all three estimation problems for nonlinear stochastic dynamical systems: prediction, filtering, and smoothing. Our new approach is based upon a proper choice of cost function, termed the effective action. We show that this functional of time-histories is the unique statistically well-founded cost function to determine most probable histories within empi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 148 1 شماره
صفحات -
تاریخ انتشار 2018